- модулярный
- модул'ярный
Русский орфографический словарь. / Российская академия наук. Ин-т рус. яз. им. В. В. Виноградова. — М.: "Азбуковник". В. В. Лопатин (ответственный редактор), Б. З. Букчина, Н. А. Еськова и др.. 1999.
Русский орфографический словарь. / Российская академия наук. Ин-т рус. яз. им. В. В. Виноградова. — М.: "Азбуковник". В. В. Лопатин (ответственный редактор), Б. З. Букчина, Н. А. Еськова и др.. 1999.
модулярный — модуляционный Словарь русских синонимов. модулярный прил., кол во синонимов: 1 • модуляционный (1) Словарь синонимов ASIS. В.Н. Т … Словарь синонимов
Модулярный идеал — или регулярный идеал ― правый (левый) идеал кольца , обладающий следующим свойством: в кольце найдется хотя бы один такой элемент , что для всех разность принадлежит (соответственно … Википедия
МОДУЛЯРНЫЙ ИДЕАЛ — правый (левый) идеал J кольца R, обладающий следующим свойством: в кольце R найдется хотя бы один такой элемент е, что для всех хиз R разность х ех принадлежит J (соответственно ). Элемент еназ. левой (правой) единицей по модулю идеала J. В… … Математическая энциклопедия
модулярный — модулярный, модулярная, модулярное, модулярные, модулярного, модулярной, модулярного, модулярных, модулярному, модулярной, модулярному, модулярным, модулярный, модулярную, модулярное, модулярные, модулярного, модулярную, модулярное, модулярных,… … Формы слов
модулярный — модул/ярн/ый … Морфемно-орфографический словарь
Регулярный идеал — Модулярный идеал или регулярный идеал ― правый (левый) идеал I кольца R, обладающий следующим свойством: в кольце R найдется хотя бы один такой элемент e, что для всех разность x − ex принадлежит I (соответственно ). Элемент e называется левой… … Википедия
Эллиптический интеграл — В интегральном исчислении, эллиптический интеграл появился в связи с задачей вычисления длины дуги эллипса и был впервые исследован Джулио Фаньяно и Леонардом Эйлером. В современном представлении, эллиптический интеграл это некоторая… … Википедия
ДЕДЕКИНДОВА РЕШЕТКА — дедекиндова структура, модулярная решетка (структура), решетка, в к рой справедлив модулярный закон, т. е. влечет (a+b)c=а+bс для всякого Ь. Высказанное требование равносильно справедливости тождества ( ас+b) с=ас+bс. Примерами Д. р. служат… … Математическая энциклопедия
Модулярная функция — Модулярная функция голоморфная функция, определённая на верхней комплексной полуплоскости (то есть множества ), является инвариантной относительно превращений модулярной группы или некоторой её подгруппы и удовлетворяет условия… … Википедия
КУБИЧЕСКАЯ ГИПЕРПОВЕРХНОСТЬ — проективное алгебраич. многообразие, задаваемое однородным уравнением 3 й степени с коэффициентами из нек рого основного поля k. Кубические кривые. Неприводимая кубич. кривая является либо гладкой (в этом случае ее канонич. класс равен 0, а род… … Математическая энциклопедия